基本概念
PCI Express是新一代的总线接口,而采用此类接口的
显卡产品,已经在2004年正式面世。早在2001年的春季“英特尔开发者论坛”上,<A href="http://baike.baidu.com/view/15281.htm" target=_blank>英特尔</A>公司就提出了要用新一代的技术取代<A href="http://baike.baidu.com/view/18562.htm" target=_blank>PCI总线和多种<A href="http://baike.baidu.com/view/26651.htm" target=_blank>芯片的内部连接,并称之为第三代<A href="http://baike.baidu.com/view/300881.htm" target=_blank>I/O总线技术。随后在2001年底,包括<A href="http://baike.baidu.com/view/2396.htm" target=_blank>Intel、<A href="http://baike.baidu.com/view/810.htm" target=_blank>AMD、<A href="http://baike.baidu.com/view/14171.htm" target=_blank>DELL、
IBM在内的20多家业界主导公司开始起草新技术的规范,并在2002年完成,对其正式命名为PCI Express。
PCI Express采用了目前业内流行的点对点串行连接,比起PCI以及更早期的计算机总线的共享并行架构,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率,达到PCI所不能提供的高带宽。相对于传统
PCI总线在单一时间周期内只能实现单向传输,PCI Express的双单工连接能提供更高的传输速率和质量,它们之间的差异跟半双工和全双工类似。
PCI Express的接口根据总线位宽不同而有所差异,包括X1、X4、X8以及X16(X2模式将用于内部接口而非插槽模式)。较短的PCI Express卡可以插入较长的PCI Express插槽中使用。PCI Express接口能够支持热拔插,这也是个不小的飞跃。PCI Express卡支持的三种电压分别为+3.3V、3.3Vaux以及+12V。用于取代AGP接口的PCI Express接口位宽为X16,将能够提供5GB/s的带宽,即便有编码上的损耗但仍能够提4GB/s左右的实际带宽,远远超过AGP 8X的2.1GB/s的带宽。
PCI Express规格从1条通道连接到32条通道连接,有非常强的伸缩性,以满足不同系统设备对数据传输带宽不同的需求。例如,PCI Express X1规格支持双向数据传输,每向数据传输带宽250MB/s,PCI Express X1已经可以满足主流声效芯片、网卡芯片和存储设备对数据传输带宽的需求,但是远远无法满足图形芯片对数据传输带宽的需求。 因此,必须采用PCI Express X16,即16条点对点数据传输通道连接来取代传统的AGP总线。PCI Express X16也支持双向数据传输,每向数据传输带宽高达4GB/s,双向数据传输带宽有8GB/s之多,相比之下,目前广泛采用的AGP 8X数据传输只提供2.1GB/s的数据传输带宽。
尽管PCI Express技术规格允许实现X1(250MB/秒),X2,X4,X8,X12,X16和X32通道规格,但是依目前形式来看,PCI Express X1和PCI Express X16将成为PCI Express主流规格,同时芯片组厂商将在南桥芯片当中添加对PCI Express X1的支持,在北桥芯片当中添加对PCI Express X16的支持。除去提供极高数据传输带宽之外,PCI Express因为采用串行数据包方式传递数据,所以PCI Express接口每个针脚可以获得比传统I/O标准更多的带宽,这样就可以降低PCI Express设备生产成本和体积。另外,PCI Express也支持高阶电源管理,支持热插拔,支持数据同步传输,为优先传输数据进行带宽优化。
在兼容性方面,PCI Express在软件层面上兼容目前的PCI技术和设备,支持PCI设备和内存模组的初始化,也就是说目前的驱动程序、操作系统无需推倒重来,就可以支持PCI Express设备。PCI Express是新一代能够提供大量带宽和丰富功能以实现令人激动的新式图形应用的全新架构。PCI Express可以为带宽渴求型应用分配相应的带宽,大幅提高中央处理器(CPU)和图形处理器(GPU)之间的带宽。对最终用户而言,他们可以感受影院级图象效果,并获得无缝多媒体体验。
PCI Express采用串行方式传输Data。它和原有的ISA、PCI和AGP总线不同。这种传输方式,不必因为某个硬件的频率而影响到整个系统性能的发挥。当然了,整个系统依然是一个整体,但是我们可以方便的提高某一频率低的硬件的频率,以便系统在没有瓶颈的环境下使用。以串行方式提升频率增进效能,关键的限制在于采用什么样的物理传输介质。目前人们普遍采用铜线路,而理论上铜这个材质可以提供的传输极限是10 Gbps。这也就是为什么PCI Express的极限传输速度的答案。
因为PCI Express工作模式是一种称之为“电压差式传输”的方式。两条铜线,通过相互间的电压差来表示逻辑符号0和1。以这种方式进行资料传输,可以支持极高的运行频率。所以在速度达到10Gbps后,只需换用光纤(Fibre Channel)就可以使之效能倍增。
PCI Express是下一阶段的主要传输总线带宽技术。然而,GPU对总线带宽的需求是子系统中最高的,显而易见的是,视频在PCI Express应占有一定的分量。显然,PCI Express的提出,并非是总线形式的一个结束。恰恰相反,其技术的成熟仍旧需要这个时间。当然了,趁这个时间,那些芯片、主板、视频等厂家是否能出来支持是PCI Express发展的关键。不过,至今依然被看好的AGP8X的性能与PCI Express在性能上的差距虽然不是太明显,但是随着PCI Express的完善,其差距将是不言而喻的。
PCI-Express是最新的总线和接口标准,它原来的名称为“3GIO”,是由英特尔提出的,很明显英特尔的意思是它代表着下一代I/O接口标准。交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI-Express”。这个新标准将全面取代现行的PCI和AGP,最终实现总线标准的统一。它的主要优势就是数据传输速率高,目前最高可达到10GB/s以上,而且还有相当大的发展潜力。PCI Express也有多种规格,从PCI Express 1X到PCI Express 16X,能满足现在和将来一定时间内出现的低速设备和高速设备的需求。能支持PCI Express的主要是英特尔的i915和i925系列芯片组。当然要实现全面取代PCI和AGP也需要一个相当长的过程,就象当初PCI取代ISA一样,都会有个过渡的过程。
PCI Express与其他传输规格比较</H2> PCI Express x16 插槽
PCI Express x1 插槽
PCIe的规范主要是为了提升电脑内部所有<A href="http://baike.baidu.com/view/1389.htm" target=_blank>总线的速度,因此<A href="http://baike.baidu.com/view/632842.htm" target=_blank>频宽有多种不同规格标准,其中PCIe x16是专为显卡所设计的部分。<A href="http://baike.baidu.com/view/4204.htm" target=_blank>AGP的资料传输效率最高为2.1GB/s,不过对上PCIe x16的8GB/s,很明显的就分出胜负,但8GB/s只有指资料传输的理想值,并不是使用PCIe接口的<A href="http://baike.baidu.com/view/1051.htm" target=_blank>显示卡</A>,就能够有突飞猛进的效能表现,实际的测试数据上并不会有这么大的差异存在。
传输通道数</TD>
| 脚Pin总数 |
主接口区Pin数</TD>
| 总 长 度</TD>
| 主接口区 长度 |
x1 |
36 |
14 |
25 mm |
7.65 mm |
x4 |
64 |
42 |
39 mm |
21.65 mm |
x8 |
98 |
76 |
56 mm |
38.65 mm |
x16 |
164 |
142 |
89 mm |
71.65 mm |
规格 |
总线宽度 |
工作时脉 |
传输速率 |
PCI 2.3 |
32 位元 |
33/66 MHz |
133/266 MiB/s |
PCI-X 1.0 |
64 位元 |
66/100/133 MHz |
533/800/1066 MiB/s |
PCI-X 2.0(DDR)</TD>
| 64 位元 |
133 MHz |
2.1 GiB/s |
PCI-X 2.0(QDR)</TD>
| 64 位元 |
133 MHz |
4.2 GiB/s |
AGP 2X |
64 位元 |
66 MHz |
532 MiB/s |
AGP 4X |
64 位元 |
66 MHz |
1.0 GiB/s |
AGP 8X |
64 位元 |
66 MHz |
2.1 GiB/s |
PCI-E 1X |
8 位元 |
2.5 GHz |
512 MiB/s(双工) |
PCI-E 2X |
8 位元 |
2.5 GHz |
1.0 GiB/s(双工) |
PCI-E 4X |
8 位元 |
2.5 GHz |
2.0 GiB/s(双工) |
PCI-E 8X |
8 位元 |
2.5 GHz |
4.0 GiB/s(双工) |
PCI-E 16X |
8 位元 |
2.5 GHz |
8.0 GiB/s(双工) |
甚至对于某些 PCI-E 1X插槽,我们完全可以将其锯开(这样有可能会失去质保),比如可以用来插上NVDIA的显卡做为物理加速卡与ATI显卡一同工作。
产品名称 |
详细参数 |
影驰9600GT中将版</TD>
| 芯片厂商:NVIDIA 显卡芯片:GeForce 9600GT 制造工艺:65纳米 显存类型:GDDR3 显存容量(MB):512 总线接口:PCI Express 2.0 16X 显存速度(ns):1.0ns 显存位宽:256bit 核心频率:650MHz 显存频率:1800MHz |
七彩虹逸彩9600GT-GD3 CF黄金版 512M N1 |
芯片厂商:NVIDIA 显卡芯片:GeForce 9600GT 制造工艺:55纳米 显存类型:GDDR3 显存容量(MB):512 显存速度(ns):1.0ns 总线接口:PCI Express 2.0 16X 显存位宽:256bit 核心频率:600MHz 显存频率:1800MHz |
七彩虹逸彩9800GT-GD3 冰封骑士3F 512M |
芯片厂商:NVIDIA 显卡芯片:GeForce 9800 GT 制造工艺:55纳米 显存类型:GDDR3 显存容量(MB):512 显存速度(ns):1.0ns 总线接口:PCI Express 2.0 16X 显存位宽:256bit 核心频率:600MHz 显存频率:1800MHz |
影驰9800GT+中将版</TD>
| 芯片厂商:NVIDIA 显卡芯片:GeForce 9800 GT 制造工艺:55纳米 显存类型:GDDR3 显存容量(MB):512 显存速度:0.8ns 总线接口:PCI Express 2.0 16X 显存位宽:256bit 核心频率:650MHz 显存频率:2200MHz |
影驰GTX260+上将 |
芯片厂商:NVIDIA 显卡芯片:GeForce GTX 260 制造工艺:55纳米 显存类型:GDDR3 显存容量(MB):896 显存速度:0.8ns 总线接口:PCI Express 2.0 16X 显存位宽:448bit 核心频率:625MHz 显存频率:2000MHz |
影驰9600GT节能加强版</TD>
| 芯片厂商:NVIDIA 显卡芯片:GeForce 9600GT 显存类型:GDDR3 显存容量(MB):512 总线接口:PCI Express 2.0 16X 显存速度:1.0ns 显存位宽:256bit 核心频率:600MHz 显存频率:1600MHz |
影驰9600GT加强版</TD>
| 芯片厂商:NVIDIA 显卡芯片:GeForce 9600GT 制造工艺:55纳米 显存类型:GDDR3 显存容量(MB):512 显存速度(ns):1.0ns 总线接口:PCI Express 2.0 16X 显存位宽:256bit 核心频率:650MHz 显存频率:1800MHz |
蓝宝石HD4850 512M 海外版 HDMI |
芯片厂商:ATI 显卡芯片:Radeon HD 4850 制造工艺:55纳米 显存类型:GDDR3 显存容量(MB):512 显存速度(ns):1.0ns 总线接口:PCI Express 2.0 16X 显存位宽:256bit 核心频率:650MHz 显存频率:2000MHz |
nVIDIA Quadro NVS 290 |
适用类型:工作站 制造工艺:80纳米 显存位宽:64bit 核心频率:300MHz 显卡接口:PCI Express x16或PCI Express x1 DirectX版本:10 |
蓝宝石HD3850蓝曜天刃PRO 512MB |
芯片厂商:ATI 显卡芯片:Radeon HD 3850 显存类型:DDRIII 显存容量(MB):512 显存位宽:256bit 总线接口:PCI Express 2.0 显存速度(ns):1.0ns |
影驰9600GTE上将版</TD>
| 芯片厂商:NVIDIA 显卡芯片:GeForce 9600GT 显存类型:DDRIII 显存容量(MB):512 显存位宽:256bit 总线接口:PCI Express 2.0 显存速度(ns):1.0ns |
[3]
PCI Express 4路采集卡
SVC404E是一款高性价比、高清晰度、质量稳定的PCI-E专业流媒体采集卡。该产品主要针对流媒体领域的要求,采用通用的 DirectShow 驱动架构,具有高效率的视频和声音采集能力。高性能的模拟视频前端滤波处理能力、高精度的音频采样能力,大大提升了视音频采集的清晰度。
注释:PCI Express是新一代能够提供大量带宽和丰富功能的新式图形架构。PCI Express可以大幅提高中央处理器(CPU)和图形处理器(GPU)之间的带宽。它可以给视频应用者更完美地享受影院级的图象效果,并获得无缝多媒体体验。
应用领域
基于互联网流媒体在线直播、视频会议系统、VOD点播、远程监控、教学、 DVD制作,硬盘播出、广告截播、媒体资产管理。
技术特点:
四路独立的视音频采集处理。
每路独立可以调成NTSC或PAL制。
四路视频输入和四路音频输入。
每路支持最大解晰度为NTSC:720x480;PAL:720X576。
支持大多数的视音频采集软件,如Media Encoder, Helix Real Producer等。
支持最大帧率30fps。
四路无压缩视音频数据DMA信道,使得四路视音频预览零CPU占用率。
高性能的模拟视频前端滤波处理能力,使原信号得到低码率高清晰的还原。
支持软件
支持国内大多数视频会议软件,例如: AVCON视频会议系统、V2 Conference视频会议系统、网动视频会议系统;
支持Media Encoder, Helix Real Producer
支持多种编码格式,包括:Wmv9,Rmvb,Rm,MPEG-4,DivX多格式视频编码,混合不同码率、分辨率的视频同步流畅输出及播放
实时预览,全文互式与处理硬件参数能力
支持可编程时间触发(GPI,持续时调,自选键)
从现存文件中进行优化转码(AVI/Quicktime/Quicktime类型文件)到多格式编码
[4]
AMD和HP将改进PCI Express 3.0规范
AMD和惠普公司的专家日前为PCI Express 3.0开发了两个新的扩展功能规范,藉由这两项新规范,除了可以降低相关微电路成本外还可以增加对多协议的支持,并且可以降低设备对中央处理器的访问频率。
相关开发人员希望他们的提案能够被明年才发布的PCI-E 3.0规范所采纳。上述两个扩展功能并不互相依赖,它们主要应用于内置系统或高速系统的图形应用。第一个扩展功能被称为多路复用协议,它利用板卡上的一系列模块,实现PCI-E和其他7种不同的协议之间的动态切换。利用该功能,我们可以构建这样一个解决方案:通过PCI-E接口,处理器和显卡通过QPI(Quick Path Interconnect)或者HT(Hyper Transport)连接。
第二个扩展功能被称为轻信息,它允许协处理器及外围设备在存储系统的支持下,通过PCI-E接口互相通信,而不必再经过中央处理器。例如,以太网交换机可以不通过中央处理器而独立的编码和解码数据。
另外,这两项扩展功能适用于工作频率为2.5GHz、5GHz和8GHz版本的PCI-E规范。
PCI-E 3.0规范向下兼容PCI-E 2.0和PCI-E 1.0,最高传输速度可达32GB/s,有望在2010年出现相关产品。<SUP onclick=gotoRef(this)>[5]
PCI Express 2.0和PCI Express16的区别</H2> PCI-E 2.0相对于目前的1.0来说,的确是名副其实的双倍规格:
带宽翻倍:将单通道PCI-E X1的带宽提高到了500MB/s,也就是双向1GB/s;
通道翻倍:显卡接口标准升级到PCI-E X32,带宽可达32GB/s;
插槽翻倍:芯片组/主板默认应该拥有两条PCI-E X32插槽;
功率翻倍:目前PCI-E插槽所能提供的电力最高为75W,2.0版本可能会提高至200W以上,目前还不确定。
PCI-Express是当前主流的总线和接口标准,它原来的名称为“3GIO”,是由Intel提出的,很明显Intel的意思是它代表着下一代I/O 接口标准。交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI-Express”。这个新标准将全面取代现行的PCI和AGP,最终实现总线标准的统一。 1990年引进PCI总线接口时,由于其具有处理器独立性、缓冲隔绝以及总线控制和随插即用等机制及特性,不久之后便一举统一了包含ISA、VESA、VL BUS、EISA以及MCA等总线规格,成为个人计算机中的总线插槽主流。
不过其运作频率的进步不若中央处理器那般突飞猛进,因此在面对新一代的扩充卡及周边时,已经有力不从心的感觉,而共享式的设计,单一高速周边(如Gb以太网络或IEEE 1394b)可能就会将PCI的所有频宽吃光。虽然针对特定用途也有高频率或具备独立频宽的版本(如PCI-X和AGP)出现,但是成本的高昂以及使用上的限制,这些特殊规格PCI并没有成为通用标准。
于2007年1月通过的PCI Express 2.0标准,除了在维持与目前PCI Express 1.1版兼容性的前提下,对单一通道宽度倍增以外(由原先2.5Gbps提升至5Gbps),并且在原有的特性之下加入了几项先进的功能,以期更为符合未来的需求。
I/O Vitualization-可应用于包括设备共享、地址转换服务(ATS)以及单/多处理器系统的单独规格。可提供给多部虚拟机器共享多种包含网卡等I/O设备,有助于系统管理者在开发以及管理上的方便性。
更强的安全保护机制-可允许软件来看至互连的封包路由,以防止被不良意图人士进行欺骗以及窃取封包数据,或者是对于数据进行假路由,在未来PCI Express 2.0规范中,这个特性将会被包含在芯片组、交换芯片以及多功能组件之中。
可自动调整的连结速度-当连结频宽或速率下降时,控制软件将会自动侦测并且对硬件进行通报,而自动对连结速度进行调整,动态配置PCI Express总线的信道。
更高的供电规格-未来高阶显示卡将会更为耗电,比如说NVIDIA即将在11月发表的G80(代号)绘图卡,其耗电量可能高达300W左右,目前1.1版的PCI Express规范只能提供70W左右,完全不敷目前及未来高阶显示卡之用,因此在2.0版规范中,将供电能力大幅提升至300W左右。
PCI Express缆线连接规范-这是属于新的应用,就如同目前SATA连接规范中有一个eSATA的外部联机标准,缆线化的PCI Express可提供更为灵活的使用性,比如说计算机的网络、储存或显示组件就不必连接至计算机主机板上,只要透过缆线连结,显示周边与储存周边都可以拥有独立的电源以及配置空间。甚至也可以进行服务器之间的互连,达到丛集的目的。
除了以上所提到的以外,更为高速的PCI Express也可以提供整合型图形芯片对主存储器更高的读取速度,不过依照以往的经验,在这方面的改进对于整合型图形芯片的效能增长可能并不会很大,影响效能的主要因素还是在于绘图芯片本身的设计。
不过高速序列架构不仅只于PCI Express一家而已,类似架构的标准还有HyperTransport、Infiniband、RapidIO以及StarFabric等,这些竞争对手也都有各自庞大势力在支撑。除了背后势力以外,在技术上也不见得会输给PCI Express,比如说Infiniband、StarFabric可藉软件追踪拓朴结构变化,以实现热插拔功能,而HyperTransport及RapidIO则是可藉由减少封包大小来加快反应速度,相较起来,PCI Express则是显得较为中庸,延伸应用较少。
截至2006年底,PCI Express已经成为个人计算机主机板的标准,由于其完全透明的软件层设计让软硬件开发者可以在利用最少资源的情况下得到最好的效能表现,不仅成为高阶3D加速卡的指定连接方式,对消费者来说,也成为了效能表现的代名词。至于PCI Express在笔记型计算机上的延伸标准ExpressCard,虽然面世已有一段时间,但是在支持周边仍不够丰富的情况之下,目前仅少数笔记型计算机厂商具有较全面的支持。
1990年引进PCI总线接口时,由于其具有处理器独立性、缓冲隔绝以及总线控制和随插即用等机制及特性,不久之后便一举统一了包含ISA、VESA、VL BUS、EISA以及MCA等总线规格,成为个人计算机中的总线插槽主流。
不过其运作频率的进步不若中央处理器那般突飞猛进,因此在面对新一代的扩充卡及周边时,已经有力不从心的感觉,而共享式的设计,单一高速周边(如Gb以太网络或IEEE 1394b)可能就会将PCI的所有频宽吃光。虽然针对特定用途也有高频率或具备独立频宽的版本(如PCI-X和AGP)出现,但是成本的高昂以及使用上的限制,这些特殊规格PCI并没有成为通用标准。
为了因应下一代周边的I/O频宽需求,以及对于整体架构上的统一化设计,Intel结合各大IT厂商,制订出PCI-Express规格。PCI-Express架构中,包含了五个堆栈层,其中与过去PCI架构在软件层(加载储存架构以及平面地址空间)方面的兼容性,确保了现存应用程序与驱动程序不需要做出任何变革即可正常运作。而由于PCI-Express在设定组态上,也同样使用了过去应用在PCI上的随插即用标准机制。软件层以封包为基础的设计,并且藉由分割执行的通讯协议,产生可由执行曾传送至I/O装置的读取以及写入需求。而连结层则是为这些封包加入编号以及错误修正码,以求达到可靠的数据传输结果。至于在传输实体层方面,则是实作了包含一传输对以及一接收对的双重单通道,每个方向皆具备有2.5Gbps的初始速度,而且可以藉由增加讯号对,以行成多路径来线性扩展。以一个信道2.5Gbps的速度为传输基础,在实体曾提供了x1、x2、x4、x8、x16以及x32等代表信道数量以及路径宽度来表示其实际传输速度。 [6]
PCI Express总线的诞生和概念
虽然,除了3D显示卡以外,直到现在还没有哪个计算机配件脱离PCI总线的束缚另起炉灶,诸如千兆网卡、声卡、RAID卡等都还在循规蹈矩的奉行着PCI规范,但,PC技术的快速发展已经让PCI总线越来越显现出不足,尤其是最近的千兆网络以及视频应用等外设,会使PCI可怜的133MB/s带宽难以承受,当几个类似外设同时满负荷运转,PCI总线几近瘫痪。不但如此,随着技术的不断进步,PCI电压难以降低的缺陷越来越凸出出来,PCI规范已经成为现在PC系统的发展桎梏,彻底升级换代迫在眉睫。
到了2001年,在Intel春季的IDF上,Intel正式公布了旨在取代PCI总线的第三代I/O技术,该规范由Intel 支持的AWG(Arapahoe Working Group)负责制定,并称之为第三代I/O总线技术(3rd Generation I/O,也就是3GIO),也就是后来的PCI Express总线规范。不过在公布之初,应用环境、配套设备还不是很完善,并不为人们所关注。到了2002年4月17日,AWG正式宣布3GIO 1.0规范草稿制定完毕,并移交PCI-SIG进行审核,该规范最终却被命名为PCI Express,而到了2003年Intel春季IDF上,Intel正式公布了PCI Express的产品开发计划,PCI Express最终走向应用。<SUP onclick=gotoRef(this)>[7]
PCI Express总线的特点和长处
PCI Express总线是一种完全不同于过去PCI总线的一种全新总线规范,与PCI总线共享并行架构相比,PCI Express总线是一种点对点串行连接的设备连接方式,点对点意味着每一个PCI Express设备都拥有自己独立的数据连接,各个设备之间并发的数据传输互不影响,而对于过去PCI那种共享总线方式,PCI总线上只能有一个设备进行通信,一旦PCI总线上挂接的设备增多,每个设备的实际传输速率就会下降,性能得不到保证。现在,PCI Express以点对点的方式处理通信,每个设备在要求传输数据的时候各自建立自己的传输通道,对于其他设备这个通道是封闭的,这样的操作保证了通道的专有性,避免其他设备的干扰。
在传输速率方面,PCI Express总线利用串行的连接特点将能轻松将数据传输速度提到一个很高的频率,达到远超出PCI总线的传输速率。PCI Express的接口根据总线位宽不同而有所差异,包括x1、x4、x8以及x16(x2模式将用于内部接口而非插槽模式),其中X1的传输速度为250MB/s,而X16就是等于16倍于X1的速度,即是4GB/s。与此同时,PCI Express总线支持双向传输模式,还可以运行全双工模式,它的双单工连接能提供更高的传输速率和质量,它们之间的差异跟半双工和全双工类似。因此连接的每个装置都可以使用最大带宽,PCI Express接口设备将有着比PCI设备优越的多的资源可用。
除了这些,PCI Express设备能够支持热拔插以及热交换特性,支持的三种电压分别为+3.3V、3.3Vaux以及+12V。考虑到现在显卡功耗的日益上涨,PCI Express而后在规范中改善了直接从插槽中取电的功率限制,16x的最大提供功率达到了70W,比AGP 8X接口有了很大的提高。基本可以满足未来中高端显卡的需求。这一点可以从AGP、PCI Express两个不同版本的6600GT上就能明显地看到,后者并不需要外接电源。
可以看到PCI Express只是南桥的扩展总线,它与操作系统无关,所以也保证了它与原有PCI的兼容性,也就是说在很长一段时间内在主板上PCI Express接口将和PCI接口共存,这也给用户的升级带来了方便。由此可见,PCI Express最大的意义在于它的通用性,不仅可以让它用于南桥和其他设备的连接,也可以延伸到芯片组间的连接,甚至也可以用于连接图形芯片,这样,整个I/O系统将重新统一起来,将更进一步简化计算机系统,增加计算机的可移植性和模块化。PCI Express已经为PC的未来发展重新铺设好了路基,下面就要看PCI Express产品的应用情况了。<SUP onclick=gotoRef(this)>[